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A convenient, fast, and accurate method of solving the one-dimensional Vlasov 
equation numerically in configuration space is described. It treats the convective terms 
in the x and v  directions separately and produces a scheme of second order in At. The 
resulting freestreaming and accelerating equations are computed with Fourier inter- 
polation and spline interpolation methods respectively. The numerical method is tested 
with linear and nonlinear problems. The method is very accurate and efficient. A new 
method of smoothing the distribution function is given. It reduces the computational 
effort by artificially increasing the entropy of the system. As a result, the distribution 
function is smooth enough to be well represented on a given mesh. The methods can be 
generalized in a straightforward way to deal with more complicated cases such as 
problems with nonperiodic spatial boundary conditions, two- and three-dimensional 
problems with and without external magnetic and/or electric fields. 

1. INTRODUCTION 

The numerical integration of the Vlasov equation has been studied intensely 
during the recent years [l-8]. There appear to be two reasons for this continued 
endeavor. First, a knowledge of the nonlinear evolution of the Vlasov equation 
is indispensable in understanding of plasmas. Second, due to fdamentation of 
the distribution function in phase space, an exact representation of the ripples 
which are continuously,generated in phase space requires more and more computer 
storage for large times. This makes the integration of the Vlasov equation a 
lengthy and expensive task in more than one dimension, if one does not prefer 
a reduced description of the distribution function which disposes of the ripples. 

In the following we present a numerical scheme which makes use of the results 
of earlier studies [2, 9, 10, 111. However, we integrate the Vlasov equation in the 
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original phase space in such a way that the programming becomes very simple 
and the overall scheme is second order in At. The method can be extended to more 
dimensions. In addition we give a new, simple procedure of how to dispose of the 
tiamentation. Thus, the computational effort can be considerably reduced if one 
is willing to pay for an artificially increased entropy of the Vlasov system. 

Section 2 describes the splitting scheme for the Vlasov equation and Section 3 
describes the Fourier interpolation and spline interpolation methods. In Section 4 
linear and nonlinear problems have been studied and compared with earlier 
numerical studies. New physical results of strong nonlinear Landau damping are 
also reported. The smoothing of the distribution function such that f(x, U, t) 
remains smooth enough to be represented on a given mesh in x and u is described 
in Section 5. The conclusions are given in Section 6. 

2. THE SPLITTING SCHEME 

We want to solve the dimensionless system (compare [l]) 

aqax = 1 - J--mj(X, v, t) dv 
-03 

for periodic boundary conditions in x. Rather than solving Eq. (1) as a whole 
for each time step, we split up the equation, i.e., we solve 

wwf  + ww- = 0 

for half a time step, and then 

(24 

(alatjf - E(X, t)(a/av)f = 0 GW 

for the second half time step. The result should be an approximation to Eq. (1). 
For simplicity we assume that the electric field E(x, t) is given. This method is 
related to the method of fractional steps and the method of weak approximation 
WI. 

In our case a formal implicit solution for Eq. (2) can be written (assuming 
E(x, t) to be known), namely, 

f(x, v, At) = f(x - v At, v, O), (34 

f(x, v, At) = f(x, v + E(% 7) At, O), 

x-vAt<x<x, o<~<At. 
(W 
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Equation (3a) is an exact solution of Eq. (2a); in Eq. (3b) an appropriate electric 
field has to be chosen in order to make the solution consistent with Eq. (2b). 
Equation (3a) represents a shift of the distribution function by an amount vi dt 
to the right for a given value of vi on a rectangular mesh in the x-u plane. A 
similar argument holds for Eq. (3b). The distribution function has to be shifted 
downwards by an amount E(X, T) fit, for a given value of x = xi . We have thus 
reduced the integration of the Vlasov equation to two successive interpolation 
problems. The interpolation problem will be discussed in the next section. For 
the time being let us assume that we can interpolate the distribution function 
to some order in dx and da. Then it is still a nontrivial task to obtain a second 
order scheme in At. We will now show how this can be accomplished. 

Let us consider the following sequence of shifting of the distribution function. 

f*(x, u) = f”(x - u At/2, v), (44 
f**(x, 4 = f*(x, 2, + E(x) At), (4’4 
fn+l(x, v) = f**(x - u At/2, u). WI 

In Eq. (4a), f is shifted along the x-axis by an amount v At/2 which corresponds 
to half a time step; next, f is shifted along the v-axis by an amount E(x) At; and 
finally it is again shifted along the x-axis again by half a time step. These shift 
operations apply evidently to any point in phase space, and in particular to the 
mesh points. 

By substituting successively Eqs. (4b) and (4a) into Eq. (4c) we obtain 

p+yx, 0) = f”(x - At(u + +E(Z) At), u + E(Z) At), (5) 

with x = x - v At/2. 
We find that Eq. (5) is equivalent to the following integrated equations of the 

characteristics of Eq. (la) by comparing the arguments off n and the right side. 

x(t) = x(t + At) - At(v(t + At) + (l/2) E(x, t + At/2) At), 

v(t)=u(t+At)+AtE(x,t+At/2), 
(6) 

where 2 = x(t + At/2). The continuum form of the characteristic equations is, 
of course, given by 

3i = v, 

d = -E(x(t), t). 
(7) 

The field E(x) in Eq. (4) is calculated after the first horizontal shift from f *(x, v). 
The density distribution, and therefore E(x, t), remains unaffected by the second 
vertical shift. Thus the field E(X, t + (At/;?.>) can be approximated by 
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E(x - v(dt/2), t + dt/2). It is correctly taken at half-time and at least correct 
to first order. 

It is now easy to convince oneself that Eq. (6) is a solution, correct to second 
order of Eq. (7). Consequently, scheme (4) solves the Vlasov system (7) correct 
to second order. 

Finally we notice that the horizontal shifting (4c) by half a time step may be 
connected with the subsequent horizontal shifting of the next time step. In effect 
a horizontal and a vertical shifting, by one step each, alternate. 

3. THE INTERPOLATION 

Equation (2a) is solved by replacing the value off at (xj , vi) by the values at 
(xj - vi dt, vi). It is convenient, but not necessary, to restrict dt such that 

I Rlmx 1 At < Ax. 

In practice dx - 1 corresponding to 1 debye length and dt - $ (in units of w;;,‘). 
Thus, I Urnax / < 8 (in units of the thermal velocity), which is easy to satisfy. We 
tried linear, quadratic, and cubic interpolations. The linear interpolation has 
exceedingly large numerical dissipation, cubic interpolation is satisfactory, but 
there is still some dissipation. The best results were obtained with Fourier inter- 
polation. 

Let the function to be interpolated be periodic and given by N points, where N 
is even. The interpolating function is uniquely defined by 

N/2-1 

f(x) = MO + c (4 cos kojx -I- Bi Sin kojX) $ &dN/2 cos k,,(NX/2), (8) 
j=l 

where k, = 277/L, and L is the length of the interval. For x = X, = p * dx with 
dx = L/N, the interpolation curve goes through the points f(x,) = f, . The 
coefficients are uniquely determined by [ 131 

N/2-1 

4 = WN) 1 f, ~0s kojx, , j = 0, I,..., N/2, 
p=0 

N/2-1 

By = (l/N) c f, sin k,jx, , 
p=o 

j = 1, 2 ,..., (N/2 - 1). 

Any interpolated value f(x, + d), where d = 6 dx, 0 < S < 1, can be written 
as a linear function of thef,‘s 

f&J + 4 = of,+,&@), (9 
Y 

5W243-5 
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where we sum cyclically over all f,,, and the weight factors are given by 

g,(S) = (l/N) SinMr - 811 cW+W - WsM4Wr - S)l. (10) 

Clearly, as S + 0, g,, --f 1 and all other g, + 0; as S + 1, g, + 1 and all other 
g,, + 0, as it should be. 

The weight functions g,,(S) were calculated for each S = vi At/Ax once and 
for all, for all vi , at the beginning of the run and stored. We did not have any 
problems with aliasing in the x-dimension. This is probably due to the fact that 
with decreasing wavelength Landau damping becomes very large and keeps the 
amplitudes for large k modes small. 

Interpolating N values off requires a computational effort proportional to N2. 
However, since we worked with N = 8, 16, the computation time remained 
reasonable. If N becomes large it might become advantageous to work with a fast 
Fourier transform or, still faster, with cubic splines with periodic boundary 
conditions [14, 151 where the number of operations grows with N only. 

Using splines we write for the interpolated values 

h = f(xi + S Ax), O<S<l. 

Note that all interpolated values A are equidistant, i.e., A is independent of the 
index i. It is easy to show that the interpolated values can be expressed by the 
original values fi and its first derivatives si by 

h = [s&l - S)2 - si+,(l - 6) S2] Ax 

+fiu - SJ2 (1 + 26) +J;,+1s2[1 + a1 - w, (11) 

where si is computed from the relation 

si-1 + 4% + si+1 = (3/WJ;,+, -h-d. (12) 

Equations (11) and (12) and the boundary conditions provide the unique deter- 
mination of the interpolation. For periodic conditions, i = 1,2,..., N, in the 
x-direction we have 

fN+l = fi 2 fo =flv, 

s N+l - - Sl 2 s,=s,. 
(13) 

When shifting along the v-axis, i = 1, 2,..., 2M, we choose 

and 
fo = f2MCI = 0 

(14) 
s, = s,,,, = 0 
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as being most appropriate for the problem. In this case we used only splines 
because the number of points 2M along the v-axis must be larger than in the 
x-direction due to the generation of filaments associated with large gradients in 
the v-direction. It is noteworthy that boundary conditions (13) and (14) satisfy 
the minimum curvature property. 

4. NUMERICAL RESULTS 

The numerical results described below are intended not only to demonstrate 
the accuracy and efficiency of the splitting scheme, but also to explore some 
unknown physics. We will use a rectangular mesh to represent the x-v phase 
plane with the computational domain R = {(x, v) I 0 < x < L, j o j < V,,,] 
(see Fig. 1). L is the spatial periodic length and Vmax is the cutoff velocity. N and 
2M designate the number of mesh points used along x and v directions respectively. 

The first example shows the recurrence effect of the free-streaming equation 
(E(x, t) = 0 in Eq. (la)) in Fig. 2. The initial condition is 

f(x, v, 0) = A&v) cos kx, (15) 

V 

AX = + 

2Vmax 
Av = (2M-I) 

-%0x v  I I I ( 

FIG. I. The mesh and the computational domain in the x-v phase plane. 
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FIG. 2. The recurremx of the numerical free4reaming solution with k = 0.5, N = 8, 
M = 16, ?‘max = 5.0, and dt = 9. 

with A = 0.1, k = 0.5, andf,(u) = (277-1/Z exp(-zP/2). The density is given by 

M-l 

p(x, t) = c f(x - $4 uj , 0) Au 
j--M 

M-l 

= A Au 1 fo(uJ cos(kx - (j + a) Avt) 
j=-M 

and is a periodic function in time with the recurrence time TR = 2n/k Au. The 
initial condition is recovered at t = 39.0 with the amplitude p = 0.099875, which 
agrees very well with the theoretical values T, = 38.95 and p = 0.1. The slight 
dissipation of the amplitude is due to the accumulated roundoff errors of single 
precision arithmetic and the discrepency of the recurrence time which results 
from the finite time resolution At = 6 in this case. 

The second example in Fig. 3 tests the linear Landau damping. The initial 
condition is 

f(x, v, 0) = f,(u)(l + A cm kx) (16) 

with A = k = 0.5 and fO(v) = (2~))-l/~ exp(--u2/2). We used N = 8, M = 16, 
and At = &, which corresponds to 256 “particles” as far as storage is concerned. 
The total kinetic energy is conserved except due to roundoff errors. The result 
agrees very well with Landau’s theory up to t g 350~;~. The recurrence effect 
occurs at t = 46.3750;~, which is comparable to the theoretical value 
TR = 48.850;~ obtained from the free-streaming case. 
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LINEAR LANDAU DAMPING 

AiO.5 K=0.5 vmex=4.0 

Av.O.258 Ax ~I.571 AI * l/6 

100 

THEORY: TR= 46.65 

Id’ 

ID-5 

D IO 20 30 40 50 60 

FIG. 3. Linear Landau damping with recurrence effect for the case Vm’max > u, , where u, is 
the phase velocity of the wave. k = 0.5, N = 8, M = 16, Vmax = 4.0, and At = 4. 

For the strong nonlinear Landau damping case with the initial condition 

f(x, 0, 0) =.f&)(l + A ax w, (17) 

with A = k = 0.5 and so(u) = (2n)-li2 exp(-v2/2), the result is shown in Figs. 4 
and 5. This case has been computed by many authors [3, 8, 91. We used N = 32, 
M = 128, dt = 4 and VmaX = 5.0. We have doubled A4 and decreased At to l/16 
to show the convergence in Au and At. We have also decreased N to 16 and the 
result is roughly the same as Gazdag’s [8] except for the second mode. However, 
it agrees well with N = 32 case up to t g 56 with a relative error 1.28 % in the 
first mode ] El I, and a relative error 1.48 % in the electric field energy We1 . 
After this time they deviate more and more, and we find a relative error 30.5 % in 
j El 1 and 65 ‘A in We1 at t s 70. This means that after t z 60, the higher modes 
become important and the use of IV = 16 has caused aliasing errors in the x-repre- 
sentation. 

Figure 4 shows that right after t = 0, the higher modes are excited to their 
maxima. The first mode damps much more than according to the linear theory 
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FIG. 4. Strong nonlinear Landau damping with A = k = 0.5, N = 32, M = 128, V,,, = 
5.0, and At = $. 

(yL = -0.153) and reaches its minimum at t g 15.3~;~ which agrees well with 
other calculations [3, 8, 91. The second and third modes damp much less than 
Landau’s theory (Ye = -0.851, - 1.775, respectively). After t g 15 all modes 
grow exponentially until t E 40, where saturation occurs. The first mode has its 
first maximum at t = 41.20;~ which is nearly the same as Gazdag’s result [8]. 
Between t s 40 and 70, it remains dominant, performs amplitude oscillation and 
reaches its second maximum at t z 610~;‘. If we use the maximum amplitude of 
the first mode at t = 41.2, we obtain the particle trapping time Ttr = 21.2w;l, 
which is comparable to the period of the amplitude oscillation T = 19.8o;l. 
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FIG. 5. Time development of the spatially homogeneous distribution function f&, t) for 
strong nonlinear Landau damping with A = k = 0.5, N = 32, M = 128, Vmsx = 5.0, and At = 6. 

Gazdag’s result [8] gives T E 25. Also, his second mode behaves somewhat 
differently from ours. First, the magnitude is much smaller for t > 30. Second, 
it shows a mild growth between t E 40 and 90, while ours shows no growth at all. 

It is important to point out that the frequencies of all the higher modes w, s nw,, 
where w1 is the frequency of the first mode, and all the waves behave coherently 
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throughout the calculation. This means that the phase velocity of the waves fall 
roughly in the region 2.0 ;S u, 5 3.0. At t = 41.2 a nonnegligible amount of 
energy is still in the electric field (1.04 % of the total energy). The energy conserva- 
tion is very good with a relative error 2.6 x 1O-4 at t g 70. 

In order to understand the nonlinear effects we have to look into the time 
development of the spatially homogeneous part of the distribution function 
(f(x, v, t)), =&(u, t) shown in Fig. 5. In the initial stage a plateau is formed 
in the vicinity of the phase velocities of the waves at t = 10. This is in qualitative 
agreement with what quasilinear theory predicts. Later a wavy structure develops 
and grows on the main body of the distribution function and persists throughout 
the computation. The wavelength agrees very well with 2?r/kt which is considered 
to be due to the nonlinear coupling between the free-streaming term and the tist 
mode. 

Niihrenberg [3] has obtained qualitatively similar but less accurate results. 
In his case&, t) becomes negative in the region 2.0 2 u 5 3.0 and the wrinkles 
disappear after t E 36, which is due to the cutoff in his transformed velocity 
space yrnax = 21. Since the wrinkles at t s 36 represent a frequency y = kt = 18, 
most of the information of the wrinkles is then neglected outside his open boundary 
after t z 36 and this eventually causes the sudden decay of the first mode at 
t E ymax/k = 42 in his results. 

At t = 15 a small bump appears in the tail of the distribution function at about 
the phase velocities of the waves and causes all of them to grow. As the waves 
grow the hole in the region 2.0 5 u 2 2.5 becomes deeper until t g 25.0. Then 
it tends to be flled out, whereupon saturation occurs at about t g 40, and the 
amplitude of the wrinkles decreases to its minimum. After saturation the amplitude 
of the wrinkles increases, then decreases to its second minimum at t g 60. The 
amplitude of the wrinkles oscillates out of phase with the amplitude oscillation of 
the first mode. 

Finally, we consider the symmetric two-stream instability with the initial 
condition 

f(x, u, 0) = (274--l/2 u2 exp(--v2/2)(1 + A cos kx), 

with A = 0.05, k = 0.5. This instability has been studied by Denavit and Kruer [5], 
and Knorr [9]. We used N = 32, A4 = 128, At = 4, and V,,, = 5.0, and the 
results are shown in Figs. 6 and 7. Figure 6 shows the first three modes. The first 
mode reaches its tlrst maximum at t g 18, then saturates but remains dominant 
all the time. Figure 7 shows the change of the electric field energy Wei versus time. 
FVei grows from t s 9 to t g 17.5 and saturates at 2.987 % of the total energy, 
and after saturation it oscillates with a period of approximately 18. Conservation 
of total energy was checked with a relative error 9.7 x lo-*. 
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A = 0.05 k = 0.5 

164 

165 
0 IO 20 30 

“p’ I 
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FIG. 6. Two-stream instability with the initial conditionf(x, u, o) = (1/(2?~)*/*) va exp(--v*/2) 
(1 + A cos kx)with A = 0.05, k = 0.5, N = 32, M = 128, Vmsx = 5.0, and At = 9. 

0.6 

FIG. 1. Electric field energy for the two-stream instability as in Fig. 6. 
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The time development of the spatially homogeneous distribution &(u, t) is 
shown in Fig. 8 which shows the filling in of the hole near the minimum o = 0 as 
time advances. The filling in of the hole ceases at t z 15 where saturation occurs. 
After saturation the wrinkles start to show up on the main body of the distribution 
and persist throughout the computation. The wavelength agrees well with 2r/kt. 
However, the amplitude is much smaller than what has been observed in the strong 
nonlinear Landau damping case. Note that the term varying like exp(ikut) was 
neglected in the kinetic theory of weakly unstable plasmas by Frieman and 
Rutherford [ 161. 

;h;, ,;;I:, ~~~~, 

0 I 2 3 4 5 0 I ‘“3.4 5 0 1 2 3 4 5 Y 1 

FIG. 8. Time development of the spatially homogeneous distribution function &, t) for 
two-stream instability as in Fig. 6. 

5. THE SMOOTHING OF FILAMENTATION 

As is by now well known [ 1, 91, the developing filamentation of the Vlasov 
equation requires more and more computer storage as the computation goes on 
in time. On the other hand, this filamentation has little influence on the lower 
moments of the distribution function in many cases. In fact, it is exactly the 
exp(ikut) terms describing the filamentation which are neglected in a linearized 
analytical treatment of the Vlasov equation [17]. 

Thus, it appears reasonable to remove them from the distribution function if 
one has to save computer time and is satisfied with a less than “accurate” solution. 
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This would also allow us to simulate more complex situations and to do plasma 
simulation in two and perhaps three dimensions. The damping of the Lamentation 
can be accomplished by adding certain entropy-producing terms to the right side 
of Eq. (1) [9, 181. This method is time consuming because it has to be done at 
every time step. Second, it is difficult to damp away exactly those frequencies in 
velocity space which can no longer be accurately represented by the chosen 
integration scheme. We finally developed the following method, which proved 
to be most satisfactory. 

Integrate Eq. (1) for a certain number of time steps. The maximum admissible 
number will be discussed below. Then smooth the distribution function for 
constant xi according to 

f’(Xj , U) = 
s 

m f(Xj ) V - 0’) g(V’) dtl’y 
-cm (1% 

where g(v) is the smoothing function and is normalized; J?a g(u) dv = 1. This is 
the most general linear relationship between f and J: 

What properties should the smoothing function g(u) havefi We require that as 
many moments of f(v) as appears practical should remain invariant under the 
smoothing process. Applying the Fourier transform 

F(y) = j- f(v) eivy do, 
-02 

G(y) = jrn g(u) eivY dv, 
-02 

(20) 

Eq. (19) is transformed into 

F(Y) = F(Y) G(Y), (21) 

where G(0) = 1. The requirement that the first n moments off remain invariant 
in the smoothing can only be satisfied if the first (n - 1) derivatives of G(y) 
vanish at y = 0. In other words, the filter function G(y) must be flat of order 
n - 1 at y = 0. The choice 

G(Y) = 1, IYI <Ye, 

= 0, IYI >Y,, 
(22) 

keeps all moments invariant, but g(a) behaves asymptotically like u-l, which 
means that integral (19) has to be extended over a fairly large domain in v, which 
is unsatisfactory, as we will see later. If G(y) is chosen to be an analytic function, 
g(v) falls off at least exponentially. Thus, if we choose 

G,(Y) = e~d-~y/yc)2nl~ (23) 
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the first 2n moments are conserved and g,(u) falls off faster than exponentially. 
For n + co the case (22) is recovered. Figure 9 shows the Fourier transform of 
G,(y) for yc = 1 and IZ = 2, 3, 4, and 5. 

A probability density is uniquely determined by its moments. Thus, if f is 
smoothed with filter function (22), the resulting J can no longer be a distribution; 
i.e., it will become negative in certain regions. Filter function (23) with II > 1 may 
also produce small negative values off because g(u) in Fig. (9) is not positive 
semidefinite. The larger the it, the more negative the g(v) in certain regions. There- 
fore we choose small n (2 or 3) to reduce the possibility that f will become negative. 
In applications only very small negative values off occurred at large U, which 
did not produce significant errors. 

0.4 

0.3 

0.0 

0.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0 
V 

FIG. 9. Fourier transforms of G,(y) = exp(--yen), n = 2, 3,4, 5. 

In smoothing f according to Eq. (19), we calculate F(y) through a fast Fourier 
transform (FFT), multiply with the filter function G(y), and transform back. In 
transforming f to F, the interval in v has to be chosen such that it is at least the 
sum of the “effective widths” of f(v) and g(v) [19]. Here the “effective width” is 
the width outside which the function is practically zero. If this rule is not remem- 
bered, alaising will occur. 

If limiting processes and distributions are admitted for g(v), the linearized 
Boltzmann and Fokker-Planck collision terms can be included in general expres- 
sion (19). 

The effective cutoff yc and the maximum time T, between two smoothing opera- 
tions are related to the “graininess” of the mesh. We deduce a relation between 
these quantities. Consider a distribution function with a spatial inhomogeneity 
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characterized by wavenumber k, represented on a mesh with du the distance 
between mesh points in u. We have f(x, u, 0) N h(u) exp(ikx). Considering only 
the free-streaming term in Eq. (l), the distribution function has developed into 
f(4 u, t) -h(u) exp(-iktu) exp(ikx). Thus, we now have “frequencies” in u 
proportional to kt. We now smooth the distribution with a filter function which 
has an effective cutoff at y, . After smoothing, the highest frequency present is yc . 
After running the program for time T, = s At, where s is the number of time 
steps, the maximum frequency present would be (yc + kT,). This frequency must 
still be well represented on the u-grid. For Fourier interpolation, the maximum 
mesh size permissible is 

Au d d(yc + kT.J. (24) 

For other interpolation schemes du is smaller. The transform of a Maxwellian 
is exp(-$yz). For y = 3, it has decreased to about 1 % of its maximum value. 
In order to represent some detail, yc should be at least twice as large. As an example, 
we take y, = 8, k = 1, dt = &, S = 16, T, = 2. We obtain du <r/10 = 0.31. 
If v max = 5, the number of points in u must be 32 to represent the interval 
- co < u < + co. This example demonstrates that even for a relatively coarse 
representations of the distribution function the spacing in u has to be quite fine. 
If the basic length in x is 47T debye lengths, good results were obtained with 8 mesh 
points. Thus, the total number of pesh points is 256, which is probably the minimum 
for a reasonable simulation in one dimension. 

The ideas elaborated above have been incorporated into the splitting scheme. 
If we apply the smoothing operation to the distribution function f(x, u, t), we 
might very well damp out some information of (f(x, u, t)) which is responsible 
for the change of the total electric field energy of the Vlasov system in time. 
Instead, we smooth the function f(x, u, t) - (f(x, u, t)) in the following calcula- 
tions. By doing this we have preferentially smoothed the fluctuation superimposed 
over (f(x, u, t))z . The cases presented in Section 4 have been studied. 

The first example is the damping of the recurrence effect shown in Fig. 10. The 
free-streaming equation with the initial condition (15) are computed by using 
yc = 6.0, T, = 2.0. The filter function G,(y) in Eq. (23) is employed with n = 3. 
We found that the recurrence effect at t g 40 is damped out completely. 

The results for nonlinear Landau damping with the initial condition (17) are 
shown in Figs. 11 and 12. We used N = 16, M = 32, dt = +, Vmax = 5.0, and 
yc = 15.0, and we have T, s 9.5 from Eq. (24). If we uut yc = 3.0, k = 0.5, 
then from Eq. (24) we see that the first mode would have no aliasing errors until 
the time Ts g 33.5 which is the first time we smooth the distribution function. 
The filter function G,(y) in Eq. (23) is chosen with n = 3. All three modes have 
all the physical features of Fig. 4. The first mode agrees well with that in Fig. 4. 
The second mode and third mode have recurrence maxima at t z 36 and t z 24 
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FIG. 10. Damping of the free-streaming solution for A = 0.1, k = 0.5, N = 8, M = 16, 
V max = 5.0, and dt = $ by using the filter function G(Y) = exp(-(y/y,)6) with yc = 6.0 and 
T. = 2.0. 

respectively. However, they saturate at roughly the same level as those shown in 
Fig. 4. The conservation of the total energy is very good with a relative error 
8 x 1O-s at t = 70. The time change of the spatially homogeneous distribution 
&,(v, t) is shown in Fig. 12. Before t = TB g 33.5f,(u, t) behaves similarly to 
Fig. 5. After we smoothed the distribution function at t = TB , the large-amplitude 
wrinkles were eventually damped away, but the main structure of the distribution 
function &(u, t) is retained. Especially in the wave-particle trapping region 
2 5 v 5 3, we have found the bump and plateau which correspond to the growth 
and damping of the waves respectively and these structures are similar to 
Fig. 5. 

This simulation corresponds to the use of 1024 “particles” as far as storage is 
concerned. The computation time is bout 30 psec per particle for an unoptimized 
FORTRAN code on an IBM 360/91. Reducing the initial amplitude would mean 
“less” nonlinearity and the use of fewer modes and a coarser flu would be satis- 
factory. In general, the number of “particles” used in simulation depends on 
the nonlinearity of the problem treated. 

For the two-stream instability case with initial condition (18) the results are 
shown in Figs. 13 and 14. Figure 13 gives the amplitudes of the f&t three modes 
and Fig. 14 the electric field energy as functions of time. The parameters used 
are the same as those used in the preceding nonlinear Landau damping case. In 
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FIG. 11. Strong nonlinear Landau damping with the same initial condition as in Fig. 4 by 
using smoothing with G(y) = exp(-(y/yJE), y,, = 15.0. Ts = 33.5, and T, = 9.5. The computa- 
tion mesh is given by N = 16, M = 32, Max = 5.0, and At = 4. 
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FIG. 12. Time development of the spatially homogeneous distribution function &(u, t) for 
strong nonlinear Landau damping described in Fig. 11. 

comparison of Fig. 13 with Fig. 6 we ound that between t = 0 and t N 20 all 
three modes are within 0.1% error. Between t N 20 and 60, the first modes are 
about 5 % different from each other. Between t g 20 and t g 30, the second 
and third modes remain within 5 % error and after t s 30 they have the same 
physical features as those shown in Fig. 6. The electric field energy in Fig. 14 
agrees roughly with Fig. 7 with a relative error within 10 % after t N 22. Checking 
the conservation of the total energy, we find a relative error 0.1% at t = 60. 

The above numerical results are much more accurate than those Knorr [9] 
obtained by employing Hermite expansions and a different damping principle. 
For the case of two-stream instability we have obtained a better agreement than 
for the case of strong nonlinear Landau damping with the results in Section 4 where 
no damping of the filamentation is used. This is because the exp(ikvt) terms 
are less significant for the two-stream instability case, as discussed in Section 4. 

In conclusion, we have shown that good results can be obtained with a very 
few number of particles by using the splitting scheme and the new smoothing 
principle. The important feature is not only that the computation time is quite 
low but also that nonlinear phenomena can be reproduced with reasonable 
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FIG. 13. Two-stream instability with the same initial condition as in Fig. 6 by using the same 
computation parameters as in Fig. 11. 

0.6 

0.5 

0.4 

*o 0.3 

0.2 

0.1 

0.0 
0 IO 20 30 40 50 60 70 

Fro. 14. The electric field energy for the case in Fig. 13. 
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accuracy. This will make two- and perhaps three-dimensional Vlasov simulations 
possible and a lot cheaper. 

6. CONCLUSION 

In this work we have developed a splitting scheme to solve the one-dimensional 
Vlasov system for a collisionless plasma with a homogeneous background plasma 
with opposite charge. The splitting scheme was used to simulate large initial 
amplitude nonlinear Landau damping and two-stream instability. We found that 
these nonlinear phenomena can be accurately produced with low computational 
effort. As a reference, the computation time for the nonlinear Landau damping 
with 4096 “particles” (N = 16, M = 128) is about 2 min for an unoptimized 
FORTRAN code on an IBM 360/91. This means a computation time of the 
order of 0.05 psec per “particle” per time step (dt = +). Appreciable savings in 
computer time are accomplished. 

In the study of the large amplitude nonlinear Landau damping (A = k = OS), 
we have found the following results. The excitation of higher modes with roughly 
the same phase velocity as the first mode during a very short transition time after 
t = 0 was found. The second and third modes have a milder damping than 
predicted by linear theory. The regrowth of the waves after a short period of 
saturation appears to be associated with the formation of a bump in the tail near 
the phase velocities of the waves. After t E 40, the waves become saturated. The 
period of the amplitude oscillation of the first mode is roughly the same as the 
particle trapping time associated with the first mode. A wavy structure develops 
and grows on the main body of the spatially homogeneous distribution function 
after t z 15w-l and persists throughout the computation. Its wavelength agrees 
well with 2n-/kt which is explained to be due to the nonlinear coupling between 
the free-streaming term and the first mode. This leads to the conclusion that the 
exp(ikvt) terms are important at least for waves with large amplitudes. 

For the problem of the two-stream instability we have also found the wrinkles 
superimposed on the main body of the distribution which again implies the 
significance of the exp(ikut) terms even though the amplitudes of the wrinkles 
are not as large as found in the strong nonlinear Landau case. 

The experiments on the smoothing of the filamentation have shown that non- 
linear effects can be reproduced with reasonable accuracy with a fewer number 
of particles and a comparatively low computational effort. This will make two- 
dimensional Vlasov simulations more feasible and cheaper. 

The splitting scheme can be generalized to more complicated problems such as 
problems with nonperiodic spatial boundary conditions, two-dimensional problems 
with and without external magnetic and/or electric fields. The advantage of the split- 
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ting scheme in simulating Vlasov plasma lies in its simplicity and convenience. We 
have shown the accuracy and efficiency of the splitting scheme in one-dimen-sional 
simulations, and we believe that two- and three-dimensional magnetized Vlasov 
simulations would become feasible by using the splitting scheme and the 
smoothing principle. 

ACKNOWLEDGMENTS 

One of us (C. C.) is indebted to Dr. K. Atkinson for numerous discussions about mathematical 
problems. The other (G. K.) would like to thank Drs. K. Symon and 0. Buneman for helpful 
discussions. Part of this work was done while one of us (G. K.) was consulting with Los Alamos 
Scientific Laboratory. 

After this work was completed Dr. K. Symon drew our attention to the fact that an idea of 
splitting has been used for the Vlasov equation by Symon, Marshall, and Ki [20]. However, we 
believe that numerous aspects of the present work are new and of general interest. 

1. T. P. ARMSTRONG, R. C. HARDING, G. KNORR, AND D. MONTOOMERY, in “Methods in 
Computational Physics” (B. Alder, S. Fembach, and M. Rotenberg, Eds.), Vol. 9, p. 30, 
Academic Press, New York, 1970. 

2. G. JOYCE, G. KNORR, AND H. K. MEIER, J. Computational Phys. 8 (1971), 53. 
3. J. NOHERNBERG, J. Appl. Math. Phys. (ZAMP) 22 (1971), 1057. 
4. P. H. SAKANAKA, C. K. CHU, ANLI T. C. MARSHALL, Phys. F/uids 14 (1971), 611. 
5. J. DENAVIT AND W. L. KRUER, Phys. FIuids 14 (1971), 1782. 
6. J. CANOSA, J. GAZDAG, J. E. FROMM, AND B. H. ARMSTRONG, Phys. Fluids 15 (1972), 2299. 
7. D. W. HEWETT, J. Computational Phys. 16 (1974), 49. 
8. F. GAZDAG, submitted to J. Computational Phys. 
9. G. KNORR, J. Computational Phys. 13 (1973), 165. 

10. G. KNORR AND M. SHOUCRI, J. Computational Phys. 14 (1974), 1. 
11. M. SHOUCRI AND G. KNORR, J. Computational Phys. 14 (1974), 84. 
12. N. N. YANENKO, “The Method of Fractional Steps,” Chap. 10, Springer-Verlag, New York, 

1970. 
13. R. W. HAMMING, “Numerical Methods for Scientists and Engineers,” Chap. 3, McGraw-Hill, 

New York, 1973. 
14. F. B. HILDEBRAND, “Introduction to Numerical Analysis,” 2nd ed., Chap. 9, McGraw-Hill, 

New York, 1974. 
15. J. H. AHLBERG, E. N. Nt~.so~, AND J. L. WALSH, “The Theory of Splines and Their Applica- 

tions,” Academic Press, New York, 1967. 
16. E. FRIEMAN AND P. RUTHERFORD, Ann. Phys. 28 (1964), 134. 
17. T. BURNS AND G. KNORR, Phys. Fluids 15 (1972), 610, Sect. II. 
18. F. C. GRANT AND M. R. FEIX, Phys. Fluids 10 (1967), 1356. 
19. E. 0. BRIGHAM, “The Fast Fourier Transform,” Chap. 7, Prentice-Hall, Englewood Cliffs, 

N.J., 1974. 
20. K. R. SYMON, D. MARSHALL, AND K. W. LI, in “Proceedings, Fourth Conference on Numerical 

Simulation of Plasmas” (J. P. Boris and R. A. Shanny, Eds.), p. 83, Eq. (31), Naval Research 
Laboratory, 1970. 


